Tag Archives: science

Day 12: Ready to fledge??

According to the Cornell Lab of Ornithology Birds of the World (https://birdsoftheworld.org/bow/species/grycat/cur/introduction), Gray Catbirds tend to leave the nest, or fledge, between 8 – 12 days. At this point they should be ~80% of their adult mass and you can see that their feathers already look much more complete than they did yesterday! Fledglings will usually leave the nest with developed flight feathers but clumsy flight, and they’re still reliant on parental care (for about 12 more days in catbirds). This is a very vulnerable stage in their lives.

They look ready to fledge, but they’re about to embark on a dangerous stage in their lives outside the nest!

Back in 2019, Rosenburg et al. published research in Science using decades of standardized bird surveys and weather radar to show that North America’s breeding bird numbers have shrunken by an estimated three billion since the 1970s. That means that more than 1 in 4 birds has disappeared in the past 50 years. While the biggest declines were in grassland birds, there are substantial losses everywhere and habitat loss is a huge reason. But cats are another.

A study of Gray Catbirds in a suburban area (much like this nest) found that predation accounts for almost 80% of fledgling mortality and 47% of the known predation came from domestic cats. Outdoor and feral cats are believed to kill about 2.4 billion birds annually (that’s four times more than collisions with windows and 10,000 times more than wind turbines). I know I’ve seen many outdoor cats wandering my neighborhood, so we can only hope that these birds go unnoticed. While we’ve watched these nestlings grow with the incredible care of the parents, the hardest may be yet to come.

Visit this link to see the 7 simple actions you can take to help birds! https://www.3billionbirds.org/7-simple-actions

Day 10: Bald spots

Feathers grow from follicles on the skin, emerging from within a protective sheath before the vane we know and love expands. You can see that most of the feathers on these nestlings are only just starting to emerge from these tube-like sheaths. 

But you can see that the feathers don’t grow everywhere. They grow in distinct tracts over a bird’s body called pterylae (pteron for “feather,” and hulé for “forest”). So while a bird appears completely covered, the feathers are actually growing from specific areas on the body to cover all the gaps. At the base of the feathers are muscles that allow birds to raise them—fluffing up to trap air and stay warm or release heat trapped under the feathers when it’s hot—or lower them to maintain aerodynamics and protect the body. 

These nestlings are still growing their feathers, and most of them are still in their sheaths (which we call “pin feathers”).

Because these pterylae leave bare skin in between (apteria, “without feathers”), this has its advantages for research. Birds have such thin skin that when we catch one and hold it carefully with its belly up, we can blow lightly on its belly to part the feathers and see the muscle and fat stores below the skin! This is one way for us to gauge the condition of birds non-invasively, particularly on migration when they’re fattening up in preparation for flight or depleted after one. Take a look at the second video to see this in action as I check out the fat and muscle of a post-flight Blackpoll Warbler!

If we carefully hold a bird with its belly up, we can see through the skin to check its fat and muscle stores!

Day 7: Feeling drained?

These demanding little nestlings are growing fast. According to the Cornell Lab of Ornithology, catbirds that hatched at 3 grams should now be over 20 grams, and supporting this growth spurt clearly requires a lot of effort from the parents! 

Interestingly, studies on songbirds like Great Tits and Purple martins seem to show a cap on energy expenditure, even when these birds are clearly working hard. So what’s going on? Some of the coolest work I’ve seen of this actually comes from seabirds. Using some nifty techniques to measure both total daily energy expenditure and resting metabolic rate (RMR, i.e. self-care energy), researchers compared breeding and non-breeding Black-legged Kittiwakes. They found that breeding birds had higher energy expenditure but actually lowered their estimated RMR (Welker et al. 2014). So while there may be a cap on energy expenditure, these birds may instead allocate more of that energy to the chicks than to themselves. 

In other words, breeding birds were reducing their self-care in order to put more energy toward raising the chicks! (Human parents reading this: “duh.”)

With that in mind, it makes sense that parents would sneak a quick snack whenever they can. You’ve probably seen this in the previous videos…Any guesses?

Feeding these hungry mouths takes a lot out of the parents!

Day 6: Nestling begging is risky. So why do it?

Nest predation is one of the most common reasons that breeding attempts fail, and predators can eavesdrop on begging babies to locate nests. Plus, the nestlings make a lot of mistakes; especially if it’s been a while since the last feeding, they’ll start begging as soon as something comes near the nest.

Begging comes as second (or first) nature to these nestlings!

So why do they do this? Here are a few of the ideas:

  1. “I need food the most!”: nestlings that are hungry will beg more, while those that aren’t will beg less, so the parent distributes food based on need. This works evolutionarily because if close relatives (i.e. siblings) survive then more of your shared genes are also passed on.
  2. “Give me the food, not them!”: each bird is more related to itself than a sibling, right? So why let them get the food? In this scenario, begging is simply a way to get food at every opportunity even if it doesn’t need it.
  3. “Feed me, I’m clearly the best!”: the nestling that can beg vigorously for the longest time is a better investment for the parent because it’s more likely to survive. So why not bet on the winner?

A study by Caro et al. (2016) found that nestlings would beg more honestly when they were alone in the nest, and other studies have shown that begging may not be all that energetically costly (so it probably isn’t a good signal of quality). So while the jury is still out and it’s likely a mix of a lot of factors, a lot of it seems to depend on the brood size. Having lots of other begging birds makes things more competitive, so chicks are less likely to be honest with their begging!

Day 1: A New Beginning!

Gray Catbird incubation lasts about 12 days. During that time, this mom was brave and vigilant. As this was right outside our front door (and we don’t have the luxury of alternative exits) I knew she’d be dealing with our comings and goings throughout this whole breeding ordeal. Since the shrub had been recently trimmed, I was lucky that at one point while walking past you could see straight through a gap to see her quietly watching you.

Embryos require a fairly stable and narrow temperature range, so her vigilance is important. Carryover effects of suboptimal temperatures during incubation range from slower nestling growth (Ospina et al. 2018, Ecol Evol) to more fearful behaviors in the offspring (Bertin et al. 2018, Scientific Reports). In catbirds, the female does all the incubating and will typically sneak off to eat around sunrise. I never directly saw the male coming to feed the female on the nest during the day, but that behavior is also typical for these songbirds.

On July 20, we had our first nestling! (It was only 8 days after I first noticed the eggs, so the first must have been laid a few days earlier as it usually takes about 12 days to hatch.) It doesn’t immediately start begging for food, so if you listen in the video you can hear the adult give several “quirt” calls that eventually trigger the open-mouthed begging response.

Baby birds have very little strength at first, so it takes a lot of effort to receive food!